Key Branch Stream and Wetland Restoration Site Year-8 Annual Monitoring Report (2011)

Anson County, North Carolina WBS Element 34398.4.1 TIP No. R-2239WM NCEEP Project 206

Submitted to:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

Submitted by:

Atkins North America, Inc. 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609

December 2011

TABLE OF CONTENTS

SUM	MARY.		1
1.0	INTRO	DDUCTION	.2
	1.1.	Project Description	.2
	1.2.	Purpose	.2
	1.3.	Project History	.2
2.0	HYDF	ROLOGY	.3
	2.1.	Success Criteria	.3
	2.2.	Hydrologic Description	.3
	2.3.	Results Of Hydrologic Monitoring	.3
		2.3.1. Site Data	.3
		2.3.2. Climatic Data	.4
3.0	STRE	AM ASSESSMENT	.5
	3.1.	Stream Monitoring Requirements	.5
	3.2.	Post-Construction Condtions	.5
	3.3.	Results of Stream Monitoring	.5
4.0	VEGE	TATION ASSESSMENT	15
	4.1.	Success Criteria	15
	4.2.	Description Of Species	15
	4.3.	Results Of Vegetation Monitoring	15
5.0	REFE	RENCES	20

APPENDICES

APPENDIX A	Figures
Figure 1.	Site Location Map
Figure 2.	Current Conditions Plan View
Figure 3.	Key Branch 30-70 Percentile Graph (2011)
APPENDIX B	Groundwater Gauge Hydrographs
APPENDIX C	Site Photos
APPENDIX D	Stream Survey Data

LIST OF TABLES

Table 1.	Key Branch Hydrologic Monitoring Results	4
Table 2.	Bankfull Events	6
Table 3.	Baseline Morphology and Hydraulic Summary	7
Table 4.	Morphology and Hydraulic Monitoring Summary	9
Table 5.	Visual Stream Morphology Stability Assessment	11
Table 6.	Stream Reach Data Summary	13
Table 7.	Results of Riparian Vegetation Plots Monitoring	16
Table 8.	Results of Wetland Vegetation Plots Monitoring	16
Table 9.	Riparian Plot Vegetation Summary Data	17
Table 10	. Wetland Plot Vegetation Summary Data	19

SUMMARY

The Key Branch Stream and Wetland Restoration Site (hereafter referred to as the "Site") is located in Anson County and was constructed and planted in the fall of 2003. The 118-acre Site covers approximately 6,200 linear feet of restored stream channel and 108.9 acres of wetland restoration. Approximately 47,800 bottomland hardwood trees were planted on 70.2 acres of the Site. To be successful, the Site wetlands must meet success criteria for both hydrology and vegetation for five consecutive years or until approved by the regulatory agency. Additionally, the restored stream must show vertical and horizontal stability with respect to as-built conditions based upon the established success criteria.

Thirteen groundwater gauges were monitored in 2011, of which ten met the success criteria for jurisdictional hydrology (saturation within 12 inches of the surface for greater than 12.5 percent of the growing season). The three additional gauges did not meet success criteria. Two of the three gauges maintained saturation for approximately 9 percent of the growing season with the third approximating 6 percent. The Site experienced below average rainfall for the 2011 growing season.

Four vegetation plots established under North Carolina Department of Transportation (NCDOT) protocol, and four riparian vegetation plots established following replanting in 2005 were monitored to measure woody stem density. In the current monitoring year, plots representing the stream restoration buffer (riparian vegetation plots) had an average tree density of 283 trees per acre and plots representing the wetland restoration area (wetland vegetation plots) had an average tree density of 750 trees per acre.

Success criteria for the restored stream reach has been established to confirm that no significant changes have occurred to the dimension, pattern, profile, and bed material over the monitoring period. Location surveys of the constructed features were conducted to verify the performance of the stream. A survey was performed using a total station to describe the stream longitudinal profile and 12 permanent stream cross-sections. Overall, the stream channel bed form and banks are stable and have not changed significantly compared to as-built conditions.

Although the reach meets the criteria for success, beaver are abundant in the area and have persistently recolonized the Site after prior removal efforts. The beaver are active with dams above and below the Site as well as within the Site boundaries at the upper end. They were removed most recently in late 2010 and re-established dams in 2011. As per the North Carolina Ecosystem Enhancement Program another removal effort has been contracted with monthly monitoring scheduled for the Site until closeout. The beavers' presence has altered the function of the stream. Instead of a flowing stream, parts of the site are characterized as a lentic system. The stream has experienced limited flow in the summer months promoting vegetation growth in the channel. This condition has been caused by a combination of factors including multiple dry summers, beaver dams above the Site, and the low slope of the stream channel.

1.0 INTRODUCTION

1.1. Project Description

The Site encompasses 118 acres and is located in Anson County between Lower White Store Road (SR 1252) to the west and Mineral Springs Church Road (SR 1240) to the east (Figure 1).

1.2. Purpose

In order to demonstrate successful mitigation, the Site must be monitored for a minimum of five years or until approved for close-out by the regulatory agencies. Success criteria are based on federal and state guidelines for stream and wetland mitigation (USACE 2003). Criteria for wetland hydrologic conditions, restored stream channel stability, and vegetation survival are included in this document. The following report describes the monitoring results for groundwater hydrology, stream channel stability, and planted vegetation during the 2011 growing season at the Key Branch Restoration Site.

1.3. Project History

Fall 2003	Construction
November 2003	Site Planted
March-November 2004	Hydrologic Monitoring (Year 1)
July 2004	Stream and Vegetation Monitoring (Year 1)
February 2005	Site Replanted
March-November 2005	Hydrologic Monitoring (Year 2)
August 2005	Stream and Vegetation Monitoring (Year 2)
March-November 2006	Hydrologic Monitoring (Year 3)
September 2006	Stream and Vegetation Monitoring (Year 3)
March-November 2007	Hydrologic Monitoring (Year 4)
September 2007	Vegetation Monitoring (Year 4)
March - November 2008	Hydrologic Monitoring (Year 5)
October 2008	Vegetation Monitoring (Year 5)
March - November 2009	Hydrologic Monitoring (Year 6)
August 2009	Vegetation Monitoring (Year 6)
March – November 2010	Hydrologic Monitoring (Year 7)
September 2010	Stream and Vegetation Monitoring (Year 7)
March - November 2011	Hydrologic Monitoring (Year 8)
September 2011	Vegetation Monitoring (Year 8)
November 2011	Stream Monitoring (Year 8)

2.0 HYDROLOGY

2.1 Success Criteria

In accordance with federal and state guidelines for wetland mitigation, the success criteria for hydrology requires that these areas be inundated or saturated (within 12 inches of the surface) by surface or groundwater consecutively for at least 12.5 percent of the growing season. Areas meeting hydrology for less than 5 percent of the growing season are classified as non-wetlands. Areas meeting hydrology between 5 percent and 12.5 percent of the growing season can be classified as wetlands depending upon such factors as the presence of wetland vegetation and hydric soils. If wetland parameters are marginal as indicated by vegetation and hydrological monitoring, consultation with EEP personnel and regulatory agencies will be undertaken to determine the extent of wetland restoration in these areas. A jurisdictional determination will be performed in early 2012 to determine the extent of wetland areas at the Site.

The growing season in Anson County begins March 11 and ends November 23 (258 days). These dates correspond to a 50 percent probability that air temperatures will not drop below 28°F or lower after March 22 and before November 15. Minimum wetland hydrology is required for at least 12.5 percent of this growing season; for Anson County, 12.5 percent of the growing season equals 30 consecutive days.

2.2 Hydrologic Description

On-site hydrologic monitoring was initially facilitated by fourteen, continuously recording groundwater gauges located throughout the wetland restoration area (Figure 2). One of the gauges could not be located in 2009, reducing the number to 13. During the 2011 monitoring season, groundwater data was collected monthly from all monitoring gauges.

2.3 Results of Hydrologic Monitoring

2.3.1 Site Data

The maximum number of consecutive days that groundwater was within 12 inches of the surface was determined for each groundwater gauge. This number was converted into a percentage of the 258-day growing season. The results are summarized in Table 1 and indicate that all gauges exhibited saturation for at least 6.2 percent of the growing season. The average saturation period for all gauges was 60.1 days (23.3%) ranging from 16 to 107 days (6.2 and 41.4%). Ten of the thirteen gauges met success criteria by maintaining saturation for more than 30 days. The remaining three gauges maintain saturation for 5 to 12.5 percent of the growing season.

Appendix B contains hydrographs of the daily water depth recorded for each groundwater gauge. In general, groundwater levels show a typical pattern of flooding or

high water table during the winter to early spring, followed by a summer and early fall drawdown period, punctuated by peaks of associated precipitation events.

Monitoring Gauge	<5%	5-12.5%	>12.5%	Actual %	Success Dates	Number of Days Gauges met Success Criteria
KBMG1			~	39.1	March 11 – June 19	101
KBMG2			✓	23.2	March 11 – May 9	60
KBMG3			~	23.2	March 11 – May 9	60
KBMG5			~	17.8	March 11 – April 25	46
KBMG6			~	41.4	March 11 – June 25	107
KBMG7			~	39.1	March 11 – June 19	101
KBMG8			~	19.3	March 11 – April 29	50
KBMG9			~	15.9	March 11 – April 20	41
KBMG10		~		9.3	March 27 – April 19	24
KBMG11		~		8.9	March 17 – April 18	23
KBMG12			~	40.7	March 11 – June 23	105
KBMG13		~		6.2	March 30 – April 14	16
KBMG14			~	18.2	July 17 – August 30	47

2.3.2 Climatic Data

Figure 3 shows a comparison of 2011 monthly rainfall to the historic range of normal precipitation for Wadesboro, NC (State Climate Office of NC, CRONOS Database). The historic range of normal precipitation is determined from rainfall data collected between 1948 and 2011. Figure 3 depicts the range of normal rainfall between the 30 percent and 70 percent of all observations compared to the actual 2011 monthly rainfall amounts.

Monthly rainfall amounts were below the 30th percentile during five months of the growing season. The months of July, September and October received average rainfall, while May received above average rainfall. The total rainfall of 25.36 inches for the year

through November is below the historic average of 41.52 inches for the same time period.

3.0 STREAM ASSESSMENT

3.1. Stream Monitoring Requirements

The Site stream monitoring plan requires an assessment of geomorphologic parameters in keeping with the U.S. Army Corps of Engineers (USACE) "Stream Mitigation Guidelines", dated April 2003. The monitoring plan includes the protocol and provisions for providing photographs and channel stability analysis on a yearly basis. Global Positioning System (GPS) equipment was used along with metal detectors to locate existing cross section pins. Twelve permanent cross-sections were located and surveyed. A 3,000 foot longitudinal profile of the restored channel was surveyed beginning near station 13+00 (Figure 2 A-B). Bank stability and overall condition of the stream was assessed during the cross-section and longitudinal profile surveys. Lateral photographs were collected at each cross-section (Appendix D). A stream monitoring gauge located in the channel provides stream flow elevation data to verify bankfull events.

3.2. Post Construction Conditions

The project involved the construction of approximately 6,200 linear feet of channel using a Priority 1 restoration approach. Engineered structures included j-hook vanes, log vanes, rock cross vanes, rootwad revetments, step pools, and additional bank sloping. A step pool was installed at the beginning and end of the reach to maintain grade. A rootwad complex was installed in the apex of numerous bends with cover logs for habitat. Cross vanes, log vanes, and j-hook vanes were installed throughout the reach to direct higher flow velocities into the center of the channel. Throughout the entire reach the inner berm was maintained, enhanced, or created as channel modifications were made.

3.3 Results of Stream Monitoring

The mitigation plan stipulated the placement of a permanent monitoring cross-section every 20 bankfull widths. A total of twelve cross sections were surveyed. Three cross-sections were identified as riffles, cross sections 5, 10, and 12. For this report, only cross sections containing riffles were used in the comparison of channel morphology presented below in Table 5. Data shown in Table 6 includes all cross sections surveyed along the reach. Overall, the stream survey data indicates a stable channel with very little lateral or vertical movement. The stream gauge registered seven bankfull events during the 2011 monitoring year (March 28, April 1, April 6, April 10, May 12, May 15 and May 28), further demonstrating stream stability. Bankfull Events for the eight year monitoring period are presented in Table 2.

Year	Evaluation Method	Number of Events	Monitoring Firm
2004	USGS Goose Creek Gauging Station	3	NCDOT
2005	N/A	N/A	NCDOT
2006	Stream Gauge 1	2	The Louis Berger Group
2007	Stream Gauge 1 and 2	N/A	The Louis Berger Group
2008	N/A	N/A	Atkins
2009	N/A	N/A	Atkins
2010	Stream Gauge 1	3	Atkins
2011	Stream Gauge 1	7	Atkins

Table 2. Bankfull Events

Although the restored reach met criteria for success, beaver are abundant in the area and have persistently recolonized the Site after prior removal efforts. Beaver are active with dams above and below the Site as well as within the Site boundaries at the upper end (Figure 2, Appendix A). They were removed most recently in late 2010 and reestablished dams in 2011. As per the North Carolina Ecosystem Enhancement Program another removal effort has been contracted with monthly monitoring scheduled for the Site until close out. The beavers' presence has altered the function of the stream. Instead of a flowing stream, parts of the site are characterized as a lentic system. The stream has experienced limited flow in the summer months promoting vegetative growth in the channel. This condition has been caused by a combination of factors including multiple dry summers, beaver dams above the Site, and the low slope of the stream channel.

Table 3. Baseline Stream Data SummaryKey Branch Stream and Wetland Restoration Site - EEP Project 206

Parameter	Gauge	Reg	jional C	urve		Pre-	Existin	g Cond	ition			Refere	ence R	each(es	s) Data			Design		Monitoring Baseline								
Dimension and Substrate - Riffle Only	1	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n			
Bankfull Width (ft))			·							27		35				22	25										
Floodprone Width (ft))										>200		>200				>150	>150										
Bankfull Mean Depth (ft))										1.01		1.16				0.65	0.93										
Bankfull Max Depth (ft))										1.75		2.17				1.15	1.74										
Bankfull Cross Sectional Area (ft ²))										35		37				17	21										
Width/Depth Ratio)										27		34				27	34										
Entrenchment Ratio											>7		>7				>7	>7										
Bank Height Ratio																												
Profile																												
Riffle Length (ft))																											
Riffle Slope (ft/ft))																											
Pool Length (ft))																											
Pool Max depth (ft))																											
Pool Spacing (ft))																											
Pattern																												
Channel Beltwidth (ft))																160		180									
Radius of Curvature (ft))										50.0		72.8				35		60									
Rc:Bankfull width (ft/ft))																											
Meander Wavelength (ft))										370		465				265		378									
Meander Width Ratio											6.3		8.1				6.3		8.1									
		-			_						_						-			_								
Transport parameters											-						-			-								
Reach Shear Stress (competency) lb/f ²	2																											
Max part size (mm) mobilized at bankfull																												
Stream Power (transport capacity) W/m ²	2																											
Additional Reach Parameters					-																							
Rosgen Classification	n												C	6				C6										
Bankfull Velocity (fps))																											
Bankfull Discharge (cfs))																											
Valley length (ft))												15	590				4149										
Channel Thalweg length (ft))												10)65				6182										
Sinuosity (ft))												1.	49				1.49										
Water Surface Slope (Channel) (ft/ft))												0.	19				0.005										
BF slope (ft/ft))																											
Bankfull Floodplain Area (acres))												11	5+				115+										
% of Reach with Eroding Banks	5																											
Channel Stability or Habitat Metric																												
Biological or Other	r																											

Shaded cells indicate these cells not available.

Table 4. Morphology and Hydraulic Monitoring Summary

Key Branch Stream and Wetland Restoration Site - EEP Project 20)6
---	----

		С	ross S	ection	1 (Glid	le)		Cross Section 2 (Run)							Cross Section 3 (Pool)								С	ross S	ection	4 (Poo	l)		Cross Section 5 (Riffle)							
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	
Record elevation (datum) used																																				
Bankfull Width (ft)	18.6	18.4	19	19.7	15.4			20.2	23.8	26.1	24	22.3			18.1	28.3	29	21.8	24.4			17.3	21.3	19.5	20	22.1			20.9	22.9	22	22.5	24			
Floodprone Width (ft)	>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			
Bankfull Mean Depth (ft)	0.7	0.9	1	0.9	0.7			1.1	1.5	1.3	1.3	1.1			1	1.2	1.2	1.3	1.2			1.2	1.1	1.2	1.3	1.3			1	1	1.1	1.1	0.9			
Bankfull Max Depth (ft)	1.5	1.6	2	1.9	1.2			2	2.6	2.6	2.3	1.7			1.9	2.5	2.9	2.3	2.5			2.2	2.1	2.1	2.4	2.3			1.8	2.8	2.1	1.9	1.7			
Bankfull Cross Sectional Area (ft ²)	13	16.2	19.5	16.9	11.1			22.2	35.2	34.2	31.4	24.9			18.1	33.4	35.1	28.1	30.4			20.8	24.2	23	26	29.3			20.9	23.3	25.2	24.1	20.9			
Bankfull Width/Depth Ratio	26.6	20.9	19	21.9	21.4			18.4	16.1	20	18.5	19.9			18.1	24	24.2	16.8	19.6			14.4	18.7	16.3	15.4	16.7			20.9	22.5	20	20.5	27.6			
Bankfull Entrenchment Ratio	>5	>5	>5	5.1	6.5			>5	>5	>5	4.2	4.5			>5	>5	>5	4.6	4.1			>5	>5	>5	5	4.5			>5	>5	>5	4.4	4.2			
Bankfull Bank Height Ratio	1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			
Cross Sectional Area between end pins (ft ²)																																				
d50 (mm)	Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			
		С	ross S	ection	6 (Glid	le)			C	Cross S	Section	7 (Rur	ו)			C	ross S	Section	8 (Poo	ol)			С	ross S	ection	9 (Glid	e)			Cr	oss Se	ection '	10 (Riff	le)		
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	MY8	MY+	MY+	
Record elevation (datum) used											<u> </u>																									
Bankfull Width (ft)	19.7	21	21	25.1	19.9			22.9	19.9	20.7	30	17.9			21.9	19.9	19	21.2	26.3			20	19.9	20	22.8	23.4			21.1	20	27	22.2	24.8			
Floodprone Width (ft)	>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			>100	>100	>100	>100	>100			
Bankfull Mean Depth (ft)	1.1	1.1	1.1	0.9	0.9			1.1	1.2	1.2	0.8	1			1.2	1.2	1.3	1.1	1.3			1.3	1.2	1.2	1	0.9			0.9	1	0.9	0.8	0.7			
Bankfull Max Depth (ft)	2	2.1	2	1.9	1.6			2	1.8	1.9	1.7	1.5			2.3	2.3	2.5	2	2.4			2.2	2	2	1.9	1.8			1.6	1.7	1.8	1.4	1.2			
Bankfull Cross Sectional Area (ft ²)	21.7	23.8	23.3	23.7	18.4			25.2	23.6	25	22.8	17.6			25.9	24.1	25.5	22.8	34.3			26	23.8	23.7	23.1	20.1			19	20.5	24.3	17.1	17.3			
Bankfull Width/Depth Ratio	17.9	18.5	19.1	27.9	21.5			20.8	16.8	17.3	37.5	17.9			18.5	16.4	14.6	19.3	20.2			15.4	16.6	16.7	22.8	27.3			23.4	19.5	30.1	27.8	35.6			
Bankfull Entrenchment Ratio	>5	>5	>5	4	5			>5	>5	>5	3.3	4.4			>5	>5	>5	4.7	3.8			>5	>5	>5	4.4	4.3			>5	>5	>5	4.5	4			
Bankfull Bank Height Ratio	1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			
Cross Sectional Area between end pins (ft ²)																																				
d50 (mm)	Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Silt	Silt			
		С	ross S	ection	11 (Ru	n)			Сг	ross Se	ection '	2 (Riff	le)																							
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY7	MY8	MY+	MY+	MY1	MY2	MY3	MY7	ŇY8	, MY+	MY+																						
Record elevation (datum) used																																				
Bankfull Width (ft)	27.6	26	31	21.5	26.2			26.9	22.9	21.2	21.5	19.4																								
Floodprone Width (ft)	>100	>100	>100	>100	>100			>100	>100	>100	>100	>100																								
Bankfull Mean Depth (ft)	1.1	1.2	1	0.9	1.1			1	0.9	0.9	0.8	0.8																								
Banktull Max Depth (ft)	2.2	2.4	2.3	1.5	1.6			2.1	1.9	2	1.6	1.5																								
Bankfull Cross Sectional Area (ft ²)	30.4	31.9	31.4	18.6	28.4			26.9	20.5	20 22 F	18.2	15.0																								
Bankfull Entrenchment Ratio	20.1 >5	21.2 >5	>5	23.9 47	3.8			20.9	20.0	23.0 >5	20.9 4 7	<u>24.1</u> 52																								
Bankfull Bank Height Ratio	1	1	1	1	1			1	1	1	1	1																								

Silt Silt Silt Silt Silt

¹ It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. MY1, MY2, MY3 data from a prior performer is not available.

d50 (mm) Silt Silt Silt Silt Silt

Cross Sectional Area between end pins (ft²)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	 Vertical Stability (Riffle and Run units) 	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			AN	6182*	%0			
		2. Degradation - Evidence of downcutting			NA	NA	NA			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	0	49			%0			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	52	52			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	52	52			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	52	52			100%			
		2. Thalweg centering at downstream of meander (Glide)	67	49			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	%001	0	0	NA
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	NA
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	NA
				Totals	0	0	100%	0	0	NA
3. Engineered Structures**	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	46	46			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	96	46			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	46	46			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does \overline{not} exceed 15%. (See guidance for this table in EEP monitoring guidance document)	46	46			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio	46	46			100%			

* Aggradation of channel due to numerous due to reduced flow from beaver dams

Table 5. Visual Stream Morphology Stability Assessment

Table 6. Monitoring Data - Stream Reach Data Summary Key Branch Stream and Wetland Restoration Site - EEP Project 206

Parameter			M	Y-1			MY-2							MY-3							MY	- 7		MY- 8								
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Мах	SD ⁴	n		
Bankfull Width (ft)																			23	21.9	23.4	22.1			15.4	23.3	24.2	28.8				
Floodprone Width (ft)																			>100	>100	>100	>100			>100	>100	>100	>100				
Bankfull Mean Depth (ft)																			0.97	0.97	0.97	0.9			0.7	1	1	1.3				
Bankfull Max Depth (ft)																			1.83	2.13	1.97	1.63			1.2	1.8	1.7	2.5				
Bankfull Cross Sectional Area (ft ²)																			22.3	21.4	23.2	19.8			11.1	23.3	22.6	33.8				
Width/Depth Ratio																			23.7	22.5	24.5	25.1			16.7	24.2	23	35.6				
Entrenchment Ratio																			>5	>5	>5	4.53			3.5	4.4	4.1	>5				
Bank Height Ratio																			1	1	1	1			1	1	1	1				
Profile																																
Riffle Length (ft)							11		61	120			40		65	135			9.06	47.9	46.4	101.6	24.5	27	8.4	51.6	47.4	106	24.6	27		
Riffle Slope (ft/ft)							0		0.006	0.037			0.001		0.004	0.011			0.000	0.000	0.001	0.012	0.005	27	0.000	0.004	0.003	0.012	0.003	27		
Pool Length (ft)							22		46	70			28		75	178			17.2	31.7	29.7	51.2	9.09	26	12.2	31.8	28.6	51.5	11.1	26		
Pool Max depth (ft)																																
Pool Spacing (ft)						39		113	252			32		111	246			25.6	75.8	76.8	135	29	26	27.6	77.7	73.8	128	28.1	26			
Pattern													_						_													
Channel Beltwidth (ft)							91		118	144			91		118	144			6.9	56.9	57	129	35.3		21.4	68.1	60.5	125	27.2			
Radius of Curvature (ft)							12		26	37			12		26	37			18	39.7	40	73	14.4		18.8	41.7	36.9	86.7	16.1			
Rc:Bankfull width (ft/ft)																																
Meander Wavelength (ft)							179		189	215			179		189	215			58	139	139	207	42.3		64.6	161	174	223	37.2			
Meander Width Ratio							NA		5.3	NA			NA 5.3 NA						0.3	2.6	2.6	5.8			1.39	2.92	2.5	4.33				
	_						_						كأكل فالمتحاصية																			
Additional Reach Parameters																																
Rosgen Classification			C	C6					С	6			C6								С	6					C	;6				
Channel Thalweg length (ft)									30	23					30	23					30	23			3023							
Sinuosity (ft)									1	.5			1.5						1.5							1.5						
Water Surface Slope (Channel) (ft/ft)									0.00	041			0.00055						NA (dry channel)							0.00029						
BF slope (ft/ft)									0.00	0245			0.00049					0.00057							0.00065							
Ri% / Ru% / P% / G% / S%																																
SC% / Sa% / G% / C% / B% / Be%																																
d16 / d35 / d50 / d84 / d95 /																																
% of Reach with Eroding Banks																																
Channel Stability or Habitat Metric																																
Biological or Other																																

Shaded cells indicate data not available.

4.0 VEGETATION ASSESSMENT

4.1. Success Criteria

According to the Stream Mitigation Guidelines, the success criteria for vegetation require that at least 320 planted stems per acre must be surviving after the third growing season. The required survival criterion will decrease by 10 percent per year after the third year of vegetation monitoring for two years (i.e., for an expected 288 stems per acre for Year 4, 260 stems per acre for Years 5 and beyond). NCDOT Stem Counting Protocol was used as the standard sampling methodology.

4.2. Description of Species

Based on the mitigation plan, the wetland restoration area and the riparian restoration area were to be planted with the following species:

Wetland Vegetation Quercus pagoda (Cherrybark Oak) Quercus phellos (Willow Oak) Quercus michauxii (Swamp Chestnut Oak) Quercus lyrata (Overcup Oak) Quercus nigra (Water Oak) Ulmus americana (American Elm) Fraxinus pennsylvanica (Green Ash) Betula nigra (River Birch)

<u>Riparian Vegetation</u> Betula nigra (River Birch) Salix nigra (Black Willow) Cephalanthus occidentalis (Buttonbush) Cornus amomum (Silky dogwood)

4.3. Results of Vegetation Monitoring

Eight vegetation monitoring $(10 \times 10 \text{ m}^2)$ plots were established to monitor planted vegetation within the Site. Vegetation monitoring plots were separated into 4 riparian vegetation plots and 4 wetland vegetation plots. During Year 8 monitoring, the Site exceeded the vegetation success criteria with an average stem density of 283 stems per acre for riparian plots (Table 6), and an average stem density of 750 stems per acre for wetland plots (Table 7). Two riparian plots did not meet success criteria but did show improvement throughout the overall monitoring period (Tables 8 and 9). Herbaceous vegetation at the Site was found to be dense and healthy. (Photographs from the vegetation plots are provided in Appendix C). Each plot exhibited good diversity and

included between 5 and 9 species with 15 total species observed across all plots. Many of the trees exhibited heights in excess of 8-10 feet.

Riparian Plots	Betula nigra	Cephalanthus occidentalis	Franxinus pennsylvanica	Quercus laurifolia	Quercus lyrata	Quericus michauxii	Quercus nigra	Quercus pagoda	Salix nigra	Ulmus alata	Total Stems	Density (Trees/acre)
R1	7	0	11	2	6	0	2	1	13	0	42	420
R5	5	1	0	0	6	1	4	0	0	0	17	170
R6	5	0	4	0	5	2	3	0	0	0	19	190
R10	1	0	11	2	11	8	0	0	0	2	35	350
TOTAL	18	1	26	4	28	11	9	1	13	2	113	1130
	Average Tree Density: 283											

Table 7. Results of Riparian Vegetation Plots Monitoring

Table 8.	Resul	ts of	Wet	land	Vege	tation	Plots	Mon	itoring	g
										_

Wetland Plots	Acer negundo	Acer rubrum	Betula nigra	Diospyros virginiana	Fraxinus pennsylvanica	Liquidambar styraciflua	Quercus laurifolia	Quercus lyrata	Quercus michauxii	Quercus nigra	Sambucus canadensis	Ulmus alata	Total Stems	Density (trees/acre)
D2	0	0	2	0	6	0	3	17	2	8	2	0	40	702
D3	0	0	3	0	44	0	7	9	0	0	0	4	67	1175
D5	0	2	5	2	13	2	3	7	7	3	0	0	44	440
D8	2	2	2	0	4	3	2	17	3	4	0	0	39	684
TOTAL	2	4	12	2	67	5	15	50	12	15	2	4	190	3333
	Average Tree Density: 750													

Onesia	Riparian Plot Numbers								
Species	Year	R1	R5	R6	R10				
	2005	2	1	0	0				
	2006	2	1	0	0				
	2007	1	1	0	0				
Betula nigra (River birch)	2008	5	4	3	1				
	2009	5	4	3	1				
	2010	5	4	3	1				
	2011	7	5	5	1				
	2005	0	1	1	1				
	2006	1	1	3	3				
Fraxinus	2007	0	1	2	3				
pennsylvanica	2008	12	0	3	12				
(Green ash)	2009	12	0	3	11				
	2010	12	0	3	11				
	2011	11	0	4	11				
	2005	0	0	0	0				
	2006	0	0	0	0				
Ourseans lourifalia	2007	0	0	1	1				
(Laurel oak)	2008	2	0	0	0				
(2009	2	0	0	0				
	2010	2	0	0	1				
	2011	2	0	0	2				
	2005	1	1	4	0				
	2006	0	0	4	0				
Ouereus hurete	2007	0	1	3	0				
(Overcup oak)	2008	5	2	2	7				
(,	2009	6	4	2	8				
	2010	6	4	2	8				
	2011	6	6	5	11				
	2005	0	0	0	1				
	2006	0	0	0	0				
Quercus michauxii	2007	0	0	0	2				
(Swamp chestnut	2008	0	1	2	6				
oak)	2009	0	1	2	6				
	2010	0	1	2	6				
	2011	0	1	2	8				

 Table 9. Riparian Plot Vegetation Summary Data

Table 9. (continued)

Salix nigra (Black willow)	2005	1	1	7	0
	2006	1	3	7	0
	2007	1	3	5	0
	2008	10	1	0	0
	2009	10	2	0	0
	2010	10	2	0	0
	2011	13	0	0	0

Table 10. Wetland Plot Vegetation Summary Data

Species	Wetland Plot Numbers								
	Year	D2	D3	D5	D8				
	2005	0	3	0	1				
	2006	0	3	1	1				
	2007	1	4	4	2				
Betula nigra (River birch)	2008	2	4	3	1				
	2009	2	4	4	2				
	2010	2	4	6	2				
	2011	2	3	5	2				
	2005	3	11	0	4				
	2006	2	16	0	4				
Fraxinus	2007	4	32	6	11				
pennsylvanica	2008	6	33	10	3				
(Green ash)	2009	4	38	9	7				
	2010	4	38	10	7				
	2011	6	44	13	4				
	2005	7	0	0	0				
	2006	3	0	2	0				
	2007	8	2	4	4				
Quercus laurifolia	2008	1	1	3	0				
	2009	4	4	5	1				
	2010	4	4	4	1				
	2011	3	7	3	2				
	2005	14	11	4	0				
	2006	5	11	4	3				
Quercus lyrata	2007	8	8	10	15				
(Overcup oak)	2008	14	11	4	19				
	2009	14	9	6	18				

Table 10. (continued)

Quercus lyrata	2010	14	9	6	18
(Overcup oak)	2011	17	9	7	17
	2005	2	0	2	4
	2006	2	0	1	4
	2007	2	0	6	6
Quercus michauxii (Swamp chestnut oak)	2008	2	0	8	5
(owamp oncound oak)	2009	2	0	8	6
	2010	2	0	8	6
	2011	2	0	7	3
	2005	0	0	8	7
	2006	3	0	1	0
	2007	0	0	0	1
Quercus pagoda (Cherrybark oak)	2008	0	0	0	0
(energistant early	2009	0	0	0	0
	2010	0	0	0	0
	2011	0	0	0	0
	2005	2	1	0	0
	2006	0	2	0	0
	2007	1	1	0	0
Quercus phellos (Willow oak)	2008	0	0	0	0
	2009	0	0	0	0
	2010	0	0	0	0
	2011	0	0	0	0
	2005	0	0	0	0
	2006	0	0	0	0
	2007	0	0	0	0
Salix nigra (Black willow)	2008	0	0	0	0
	2009	0	0	0	0
	2010	0	0	0	0
	2011	0	0	0	0

5.0 REFERENCES

- State Climate Office of North Carolina. CRONOS precipitation database [online]. Retrieved 11-28-11.
- NRCS USDA. National Water and Climate Center. Climate Information- Wetlands Retrieval for Anson County Growing Season [online]. Retrieved 11-28-11. <u>http://www.wcc.nrcs.usda.gov/cgibin/getwetco.pl?state=nc</u>
- Stream Mitigation Guidelines, April 2003. Authored by a workgroup consisting of USACE (Wilmington District, USEPA, NCWRC and NCDWQ). Riparian Restoration pg. 18.

APPENDIX A

FIGURES

- PROPOSED WETLAND RESTORATION (91.4 AC.)
- EXISTING FOREST (NOT PLANTED) (26.9 AC.)
- 2010 SURVEYED STREAM CHANNEL
- 2400 2011 SURVEYED STREAM CHANNEL
- APPROXIMATE EXTENT OF BEAVER IMPOUNDMENT

 - <260 STEMS/ACRE

ATKINS
REVISIONS
Client:
Ecosystem
Project:
KEY BRANCH STREAM & WETLAND RESTORATION SITE
ANSON COUNTY, NORTH CAROLINA
CURRENT CONDITIONS PLAN VIEW
Dwn. By: Ckd. By: RLG JWG
Date: Scale: DEC 2011 1"=250' Project No.: 100005068
FIGURE
2B

Data Source: State Climate Office of NC (CRONOS Database)

APPENDIX B

GROUNDWATER GAUGE HYDROGRAPHS

Key Branch

Key Branch 2011 Monitoring Gauge 5 - A286E29 Key Branch

5

Key Branch 2011 ring Gauge 13 - A27BI

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

SITE PHOTOS

THIS PAGE INTENTIONALLY LEFT BLANK

D2 – Vegetation Plot - facing north

D3 - Vegetation Plot - facing north

D5 - Vegetation Plot - facing south

D8 – Vegetation Plot - facing north

R1 – Vegetation Plot - facing north

R5 – Vegetation Plot - facing northwest

R6 - Vegetation Plot - facing southwest

R10 - Vegetation Plot - facing south

After beaver dam removal at top of site. November 23, 2010

Beavers had returned to top of site by February 23, 2011

Beaver pond at top of site - May 5, 2011

2nd beaver dam near top of site - May 5, 2011

APPENDIX D

STREAM SURVEY DATA

THIS PAGE INTENTIONALLY LEFT BLANK

